Almost-Fisher families

نویسندگان

  • Shagnik Das
  • Benny Sudakov
  • Pedro Vieira
چکیده

A classic theorem in combinatorial design theory is Fisher’s inequality, which states that a family F of subsets of [n] with all pairwise intersections of size λ can have at most n non-empty sets. One may weaken the condition by requiring that for every set in F , all but at most k of its pairwise intersections have size λ. We call such families k-almost λ-Fisher. Vu was the first to study the maximum size of such families, proving that for k = 1 the largest family has 2n− 2 sets, and characterising when equality is attained. We substantially refine his result, showing how the size of the maximum family depends on λ. In particular we prove that for small λ one essentially recovers Fisher’s bound. We also solve the next open case of k = 2 and obtain the first non-trivial upper bound for general k.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relations between Renyi Distance and Fisher Information

In this paper, we first show that Renyi distance between any member of a parametric family and its perturbations, is proportional to its Fisher information. We, then, prove some relations between the Renyi distance of two distributions and the Fisher information of their exponentially twisted family of densities. Finally, we show that the partial ordering of families induced by Renyi dis...

متن کامل

Computing with Fisher geodesics and extended exponential families

Recent progress using geometry in the design of efficient Markov chain Monte Carlo (MCMC) algorithms have shown the effectiveness of the Fisher Riemannian structure. Furthermore, the theory of the underlying geometry of spaces of statistical models has made an important breakthrough by extending the classical theory on exponential families to their closures, the so-called extended exponential f...

متن کامل

On the two oldest families for the Wright-Fisher process

We extend some of the results of Pfaffelhuber and Wakolbinger on the process of the most recent common ancestors in evolving coalescent by taking into account the size of one of the two oldest families or the oldest family which contains the immortal line of descent. For example we give an explicit formula for the Laplace transform of the extinction time for the Wright-Fisher diffusion. We give...

متن کامل

Maximum likelihood eigenfunctions of the Fokker Planck equation and Hellinger projection

We apply the L2 based Fisher-Rao vector-field projection by Brigo, Hanzon and LeGland (1999) to finite dimensional approximations of the Fokker Planck equation on exponential families. We show that if the sufficient statistics are chosen among the diffusion eigenfunctions the finite dimensional projection or the equivalent assumed density approximation provide the exact maximum likelihood densi...

متن کامل

SFB 823 Skew - symmetric distributions and Fisher information The double sin of the skew - normal

Hallin and Ley (2012) investigate and fully characterize the Fisher singularity phenomenon in univariate and multivariate families of skew-symmetric distributions. This paper proposes a refined analysis of the (univariate) Fisher degeneracy problem, showing that it can be more or less severe, inducing n (“simple singularity”), n (“double singularity”), or n (“triple singularity”) consistency ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 138  شماره 

صفحات  -

تاریخ انتشار 2015